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It is well known that if the condition WT << 1 is not fulfilled in an 
ionized gas (where w is the cyclotron frequency of a charged particle 
and r is the average time between collisions (strong magnetic field, 
rarefied medium)), it is essential to take account of the fact that the 
transfer coefficients depend on the magnetic field, and they become 
anisotropic [I, 5-9 I, In the last few years several publications have 
appeared dealing with the flow of ionized gas, assuming anisotropic 
coefficients of viscosity and conductivity. Articles [ 2.3 1 give deriva- 
tions of the fundamental magnetic plasmo-dynamic equations taking into 
account the influence of the magnetic field on the transfer process with- 
in a fully ionized gas, and a detailed study of Couette flow is adduced. 
Kaplan [ 4 I and Lighthill [ 11 1 have studied the effect of anisotropic 
conductivity on a magneto-gasdynamic shock wave and on the wave motion 
of a conducting medium. Article [lo 1 dealt with the effect of aniso- 
tropic conductivity on the longitudinal flow of a weakly ionized gas in 
a narrow annular channel within a radial magnetic field. 

This paper deals with steady flow of a weakly ionized gas between 
parallel non-conducting plates within a transverse homogeneous magnetic 
field B,. ‘Ihe following assumptions are made in order to simplify the 
problem: 

1) the mean free path in the gas, X, is much less than the transverse 
dimension of the channel 2a, i.e. the conditions of a homogeneous medium 

are fulfilled; 

2) the degree of ionization of the gas is small; 

3) the condition OiTi << 1 is fulfilled for the ions, and this allows 
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the viscosity coefficient q to be considered a scalar quantity, and the 
effect of ion slip with respect to the gas can be neglected; 

4) the following inequality is satisfied: R,.= up V,a << 1, where V, 
is the mean gas velocity in the channel; conditions (21, (3) and (4) 
allow one to use a stream function in the following form: 

j+wt(jxk)=o(E+vxB) 
i 
or = Boez 

me ) 

(where k Is the unit vector in the direction of the magnetic field) 

5) the physical characteristics of the gas (p, q, o, p, ~1 are assumed 
constant. 

With these assumptions the fundamental equations for this problem 
take the form 

~(vv)~=-v~+jxB+qAv, divv=O (1) 
rot H = j, div H = 0, j+~~(jx~)~~(E+vxB) (2) 

rotE = 0, diwaB==@ (3? 

We will assume that the homogeneous external magnetic field B, = pHO 
is parallel to the z-axis, whilst there are constant pressure gradients 
along the x- and y-axes (~p/~x) = - P,, (dpfay) = - Pr and there is an 
external homogeneous electric field E, 
system (1) to (3) can then be satisfie d 

and Eay. All equations of the 
if we assume that the required 

quantities are functions of the transverse coordinate z only. The system 
therefore reduces to the following equations: 
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Using (9) to eliminate the 
following system of equations 
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stream density from (41, we arrive at the 
for the velocity components: 

@U --$L+os+= - ~-~2(Eov_l-OTEox) 
dz" 11 

d2v N2 
dz2 

a~ D-cmY ~u=-;+f2(E,,-orE,,) --- 

(IO) 

N2 = Iv2 
1 + WV (11) 

The solution of (lo), which is even with respect to the z-coordinate, 
is of the form 

u= (12) 
V=- 

aNz C‘psb - PNz PNZ a cos a + Clsiha* sin a + il, 
a (13) 

where 

zc:- -+1/~1+aW+1 

A, = 

If we determine the constants 

9 p = -& 1/p? + &2-- 1 (14) 

9 A, = +& (PV - mP,) -E% (15) 

Cr and C2 using the boundary conditions 

we find 

u=v=o for z=a (1 fi) 

C 
1 

= _ AlcosbaN cos PN + ApinhaN sin PN 

A1 9 
A, = aidbz &V + COST BN 

c, = - 
AlsinhaN sin PN - A.pxhctN cos PN (17) 

AI 
. 

For volume. gas fluxes Qz and Q, in the directions of the x- and y- 
axes, we obtain by calculation 

Qx= i u&=2(1 ( 
A, - "1":1:ay 

where 
CD1 = asinbaM~~haN _t p sin pN cos PN 

(D2 = /3 sfiaNc0shaN - a sin f3iV co.5 PN (19) 
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By use of Formula (9) we derive the following expressions for the 
full flows in the directions x and y: 

--a 

For known velocity components u(z) and 
the induced magnetic-field intensities H, 
duced electric-field strength E, and 
the volumetric charge density 6 are 
determined from Equation (7). 

We now deal with two particular 
cases. 

1) Assume that a given constant 
channel pressure gradient Pz along 
the x-axis maintains the steady motion 

u(z), by using (5) and (9), 
and Hy can be found. The in- 

of the gas, whilst Q, = I,.= Eix = 0. Fig. 1. 

‘Ihis example corresponds to the problem 
of the flow of a conducting gas through 
an infinitely long channel with non-conducting walls whose width is large 
compared to the height. The conditions Q, = I, = 0 yield the equation 

*‘- MA 
- ‘%a + ‘ml _ o 

, 1 
E,,- B,$ =0 

It follows from these latter expressions that I,= 0. 

From system (21), using (151, we find 

A 
1 

= MA, CM&-- @I) Pxa2 
N2Az 9 ’ 

,4 

2 
= MU’,2 pxa2 

TV&--y- 

(21) 

(22) 

where 
A’2 = 01 (MA, - CD,) f cD,(MA,oz - (Dz) (23) 

Tbe flow in the x-axis direction is given by the formula 

QX = (MAI -Nf;\‘: + a2.J 2p;n3 
(24) 

which for the case M = const, or + 0 leads to the well-known solution 
of the Hartmann problem with isotropic conductivity and total current 
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equal to zero: 

(25) 

The graphs in Fig. 2 illustrate the relation between the flow 
Q,” = QJ( 2P$ : q) and the quantity OT given by Formula (24) for 
various values of the Hartmann number M, If only the intensity of the 
external magnetic field Ho is varied, the quantity y = ws/M remains 

i%. 2. Fig. 3. 

constant and is a characteristic of the degree of rarefaction of the 
medium. A graph showing the relation between the flow Q,” and the 
Hartmann number is shown in Fig. 3. Daspite the fact that the total flow 
Qy and total current 1, are zero, because of the anisotropic character 
of the conductivity transverse flows and electric currents arise. 

2) In the second example it is assumed that both the medium and the 
currents can flow freely in the x- and y-directions. For simplicity, put 
P 

x 
= E,, = Eaz = 

t en find 
0, whilst the value of P, is assumed to be given. We 

2P,a3 (MA2 Qx=- - @i) + ot@z 2P,a mz 
Y*Al ’ 

I,=-- 
& M& 

=xa MA1 - tD1 I,= -- 
Bo MAI (27) 
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In the limiting case M= const, or + 0, the expressions found trans- 
form into formulas of another regime of motion in the Hartmann problem, 
in which the intensity of the electric field is equal to zero: 

QX _ zp;a’ Md$-- M , I, = _ T ““;~,;;~~~ (28). 

A graph showing the ratio between the flow Q, arising because of 
anisotrogic conductivity of the transverse stream and the main flow Q, 
as a function of OT is shown in Fig. 4. 

Lateral flow vanishes both when or + 0 
and for large values of WT. 

It follows from the illustrations on 
the graphs and from analysis of the 
formulas that at large values of or the 
solutions obtained tend asymptotically 
to the normal ones which correspond to 
the problem for a non-conducting fluid: 

Thus the effect of a magnetic field 
on the main stream is weakened as the 
value of or increases because of the 
decrease in conductivity of the gas. On 
the other hand, anisotropic conductivity 
complicates the whole flow pattern, and 
this is expressed by the appearance of 
transverse flows, an induced electric 
field, and a volumetric electric charge. 

Fig. 4. 
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